题目

limx01cosx(cos2x)12(cos3x)13x2求 \lim_{x\rightarrow 0}\frac{1-\cos x (\cos 2x)^\frac{1}{2}(\cos 3x)^\frac{1}{3}}{x^2}

引论一

a,b,c为自由变量,f=abc,有f=(aa+bb+cc)(abc)若a,b,c为自由变量,f=abc,有\\ f'=(\frac{a'}{a}+\frac{b'}{b}+\frac{c'}{c})(abc)

引论二

d(costx)1t(costx)1tdx=tantx\frac{d(\cos tx)^{\frac{1}{t}}}{(\cos tx)^{\frac{1}{t}}dx}=-\tan tx

limx01cosx(cos2x)12(cos3x)13x2=limx0d(1cosx(cos2x)12(cos3x)13)2xdx洛必达=limx0(dcosxcosxdx+d(cos2x)12(cos2x)12dx+d(cos3x)13(cos3x)13dx)(cosx(cos2x)12(cos3x)13)2x引论一=limx0(tanx+tan2x+tan3x)(cosx(cos2x)12(cos3x)13)2x引论二=limx0x+o(x)+2x+o(x)+3x+o(x)2x泰勒展开=3\begin{aligned} &\lim_{x\rightarrow 0}\frac{1-\cos x (\cos 2x)^\frac{1}{2}(\cos 3x)^\frac{1}{3}}{x^2}\\ =&\lim_{x\rightarrow 0} \frac{d(1-\cos x (\cos 2x)^\frac{1}{2}(\cos 3x)^\frac{1}{3})}{2xdx}\qquad 洛必达 \\ =&\lim_{x\rightarrow 0} \frac{-(\frac{d\cos x}{\cos xdx}+\frac{d(\cos 2x)^\frac{1}{2}}{(\cos 2x)^\frac{1}{2}dx}+\frac{d(\cos 3x)^\frac{1}{3}}{(\cos 3x)^\frac{1}{3}dx})(\cos x (\cos 2x)^\frac{1}{2}(\cos 3x)^\frac{1}{3})}{2x} \qquad 引论一\\ =&\lim_{x\rightarrow 0} \frac{(\tan x+\tan 2x+ \tan 3x)(\cos x (\cos 2x)^\frac{1}{2}(\cos 3x)^\frac{1}{3})}{2x}\qquad 引论二\\ =&\lim_{x\rightarrow 0} \frac{x+o(x)+2x+o(x)+3x+o(x)}{2x}\qquad 泰勒展开\\ =&3 \end{aligned}